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1. Introduction

a) Transform theory

� It is well known that a discrete-time signal x(n) can be represented as linear combination  
of a set of discrete-time (synthesis) vectors bi(n)
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(1)

(2)

These weights are elements of a vector C, which is called the transform of a signal.

(3)

x(n) = åcibi(n)
i

This is known as the synthesis equation. The ci are the weights of the vectors, which are  
generated by computing the inner product of the signal and a set of analysis vectors ai(n)

ci = á x(n), ai(n)ñ

C(i) = åx(n)ai(n)
n

This equation is known as the analysis equation
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�Transforms are important for many reasons:

1. New information is provided about the signal

Example: The Fourier transform provides information on the frequency content of  
a signal

2. Processing a signal in the transform domain can be simpler or implemented more  
efficiently.

Example: Convolution becomes multiplication in the Fourier domain, which is easier to  
perform.

3. The signal may be represented by fewer numbers in the transform domain, i.e.,  
some ci = 0.

Example: The Discrete Cosine Transform (DCT) is widely used in speech and image  
compression because it does a good job of decorrelationg these types of signals
( makes many ci = 0).

4
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(4)
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(5)

(6)

(7)

�Combining the analysis and synthesis equations yields:

xˆ(n) = åáx(n), ai(n)ñ bi(n)
i

X̂ = BAX

Where A and B are the analysis and synthesis matrices respectively, and x̂ is the  
reconstructed signal. To get x̂ = x, B =A-1.

�We may break this class of invertible transforms into three groups:

1. Orthogonal/Unitary

B = AH where AH = A–1

bi(n) = ai*(n)

Example - DFT:

i

j2pk
N

è ø
÷

æ -----------nö
* –j2pk

N--------------n

ib *(n) = çe = e = a (n)
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2. Biorthogonal

6

B = A-1 (8)
(9)

3. Non-orthogonal transform

B = A+, where A+ is the pseudoinverse. (10)

(11)

á ai(n), bi(n)ñ = dj = i

Example - Lapped Orthogonal Transform (LOT)

Frames

�A frame is a set of functions, call them Y , such that a linear expansion can be performed,  
i.e., the set of functions spans L2(R), which is the space of finite energy signals. Hence,
a signal can be represented as

x = A–1å áx, Y ñỸj
j

j
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Mathematically, this can be expressed as

(12)já x, Y ñ 2 £ B x 2A  x  2 £ å
j Î Z

for some A> 0 and B< ¥ . A and B are known as the frame bounds, and can be numerically  
calculated given a particular frame

� If the number of vectors in the frame exceed the number of vectors needed to span the  
space, or the dimension of the vectors is greater than that of the space, then the expansion  
is redundant and we effectively have a nonorthogonal transform. The amount of  
redundancy can be measured by taking the ratio of the frame bounds B/A > 1. Thus,
the higher the ratio, the greater the redundancy.

� If A = B, then the frame is called a “tight frame”, This is equivalent to having the
minimum number of vectors to span a particular space and having the dimension of the
vectors equal to that of the subspace i.e., the transformation matrix is square.

7
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� If A = B = 1, then we have a “normal” tight frame, or “energy-preserving” tight frame.
A tight frame may add energy in the form of a non-unity A and B. Clearly, an orthonormal  
set preserves the energy of the signal (it is isometric). We may obtain a normal tight  frame 
from a tight frame by dividing the frame bound equation by either A or B.
This is equivalent to scaling each vector by its norm (length) so that they all have
unit length. A tight frame behaves as an orthonormal basis, even if the basis functions  
are not linearly independent.

� In general, frames are not orthonormal, do not satisfy the Parseval Identity (does  
not preserve energy), and the expansion using frames is not unique.

8
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Orthonormal Basis Functions

9

(13)

(14)

� A basis is a special case of a tight frame in which the vectors Y not only span the  
space, but are also linearly independent. If the vectors are, in addition, orthonormal  
to each, meaning

áYk, Ylñ = dkl or

k l

k = l  
k ¹ lî

í 0áY , Y ñ = ì1

then we may say that the set of vectors Y form an orthonormal basis of the space.  
An orthogonal (or biorthogonal) transform is a mapping from a space defined by  
one orthonormal basis to another space defined by a new orthonormal basis. In  
addition, this transformation is unique.

� When we are dealing with time signals, we use the standard Euclidean basis vectors,  
which in matrix form is the Identity matrix I. Hence, when we apply an orthogonal  
transform like the (Discrete) Fourier Transform, we are projecting the signal from  
the Euclidean basis vectors to a new orthonormal basis, which are the vectors of
the transform matrix.



Time-Frequency Representations

� In summary, we view the classification of the frames as in the following:

fig 1. Classification of frames

Here, a biorthogonal basis is one in which the synthesis basis is different, yet orthogonal to,  
the analysis basis (as in a biorthogonal transform).

Frames

10

Tight Frames  
( A = B)

Biorthogonal  
(A = B = 1)

Orthogonal
Ỹ = Y*
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fig 2- Tilings of the time-frequency plane for the Identity & Fourier Transforms

b) Time-Frequency Representations

� Transforms are limited in the sense that only one view of the signal is allowed at a time.  
For example with the Fourier transform, we may either view how the signal varies in time  
or how it varies in frequency, but not both. This is shown pictorially below in figure 2.  
Transforms do not allow for a combination of the two domains. This is acceptable for  
stationary signals, i.e., signals whose components do not change in time. However,  
transforms are quite unacceptable for nonstationary signals, since we often wish to know  
when different frequency components occur in time

IDENTITY TRANSFORM Fourier Transform

11

TimeTime

FrequencyFrequency
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� Time Frequency Representations (TFRs) provide this combination of domains.
TFRs map a one-dimensional (continuous) signal in time (or frequency) into a
two-dimensional (continuous) function in time and frequency.

x(t) « Tx(t, f)

� This domain is often called the time-frequency (TF) plane.

� To demonstrate the importance of TFRs, consider the two signals in figure 3 and
their spectra. Due to the fact that time information is lost, the spectra appear identical.  
Ideally, we would like the TFR to display data as in figure 4

12
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fig 4. Ideal TFRs

� In practical applications, we must deal with discrete signals x(n). Hence, we must also  
discretize the TF plane. This can be done, in theory, by sampling the continuous TFR.
In practice, we only compute the TFR at these sample locations to produce a discrete TFR.  
This effectively partitions the TF plane, which can easily be seen by connecting adjacent  
sampling points as in figure 5

Time

14

Time

Frequency Frequency
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f2
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fig 5. Uniform sampling and tiling of the TF plane

� These partitions are called tilings of the TF plane. Various TFRs partition the TF plane  
in different ways. The tilings in figure 5 are two extreme examples of a TF tiling.

15
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2. Short-Time Fourier Transform (STFT)

16

(15)

�The window w(n) can be any standard window function, such as Boxcar(rectangular),
Hamming, or Bartlett window. The Gabor expansion uses the Gaussian function as
window. The window plays a critical role in STFT analysis, and different windows
will lead to different TFRs.

(16)

where N is the window length. Note that this is equivalent to computing the Discrete  
Fourier Transform (DFT) of a length N block of the signal x(n). The discrete STFT  
uniformly samples the continuous STFT, as in figure 5.

�One of the most common TFRs is the short-time, or windowed, Fourier transform.  
It is defined as:

–j2pft
STFTx(t, f) =  òx(t)w*(t – t)e dt

t
where w(t) is some window function. This is equivalent to computing the Fourier
transform of a windowed segment of data.

�The discretized version of the STFT can be defined as:

STFT(m, k) = å[x(n)w(n – m)]e–j2pnk ⁄ N

n
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� Hence, an uncertainty exists in that we cannot simultaneously know the instantaneous  
time occurrence and frequency of a signal component. This uncertainty is parallel to the  
Heisenberg’s Uncertainty Principle in quantum mechanics with position and momentum  
of an electron.

� This uncertainty is due to the inherent relationship between the time and frequency  
domains. A signal that is shorter in time is longer in frequency, and vice verse. A clear  
example is the FT of a delta, which is unity. In this case, we have perfect time resolution  
and infinite frequency resolution. Another example is the sinuosoid, which is infinite in  
time and has perfect frequency resolution. This important theorem is known as the  
Balian-Low Theorem, which states that there is a bound to the amount of resolution
that can exist, which can be quantitatively expressed as:

(17)

are the time and frequency resolutions, and are defined as

(18)

1
4p(Dt)(Df) ³ -----

where Dt and Df

òt2 x(t) 2dt òf2 X(f) 2df

ò x(t) 2dt ò X(f) 2df
Dt2 = --------------------------- and Df2 = ----------------------------

21
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� There are three ways that we can view the calculation of a discrete-time,  
discrete-frequency TFR:

1. Windowing the signal

2. Windowing the basis functions

3. Applying a bank of frequency-selective filters

All of these views are equivalent and each adds to the understanding of the  
generation of TFRs.

1. Windowing the signal

� This is perhaps the most obvious approach, and it has been discussed already.
We take a block of data of length N from a signal of length L and apply a transform.  
Since the same algorithm is used to perform the transform for each block, we can  
say that the basis vectors of the transform do not change. This is desirable for  
implementation purposes:

22
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Similarly we can create a composite basis vector

which results in

(19)

–j2pnk
N-----------------

Y(n) = w(n)e

STFTx(m, k) = åx(n)Y(n –m)
n

� By windowing the basis vectors, we are creating a new basis for the entire  
TF plane. The number of basis vectors increases from N to

N ´ (number of blocks) = N ´ (L ⁄ N) = L

Hence, if we have a length L = 64 signal, then by windowing the basis functions we  
create a set of 64 basis functions for the TF plane. This value is also the dimension of  
the space that we are trying to characterize. Remember that if we have more than these  
64 vectors, we have a redundant expansion and the orthonormal basis becomes a  
frame (B/A > 1). If we have less than 64 vectors, the system is undetermined and
the transform is noninvertible.
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Frequency

Time
t1 t2

fig 12. Arbitrary TF tiling for a length L = 32 signal

� Note that we also have L tiles in the TF plane. Hence, each tile has a basis vector  
associated with it. For a particular tile, its basis vector will occupy the same time  
and frequency band as the tile. For example, the basis function corresponding to the  
shaded tile in figure.. above will occur from time t1 to time t2, and will occupy the
frequency from f1 to f2.

f2

f1

26
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(20)

27

� Hence, the second way we may compute a TFR is to find a basis for the TF plane  
of a dimension equal to the signal length (dimension), and then compute the inner
product of the entire signal and each basis function. This is equivalent to projecting  
the signal onto a new L dimensional space.

Note: Each tile has a minimum area of 1/4p due to the Balian-Low Theorem.  
This area can be calculated by multiplying Dt = t2 – t1 and Df = f2 – f1 .

3. Applying a bank of frequency selective filters

The Fourier transform of the STFT equation yields:

x

–j2pnk
N-----------------

STFT (n, l) = åX(k)W(k – l)e
k

= åX(k)Y(k – l)
k

� The quantity W(k) is the Fourier transform of the time window w(n). If the time  
window is a bandpass filter, i.e., the frequency response is limited to a finite,
non-piecewise band, we may view W(k) as a “frequency window”. Hence, we may  
view TFR generation as applying a frequency window, or filter, to the data
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� Clearly, all the three methods described above will produce the same effect,  
and thus are equivalent. The last is easiest to implement and leads to the  
well-known filter bank structure shown in figure (Note L < M will lead to  
a redundant expansion (frame)).

x(n)

29

t0(n)

t1(n)

tM-1(n)

H0(z)

H1(z)

HM-1(z)

y0(n) =

y1(n) =

yM-1(n) =

–jw0n
e

–jw1n
e

–jwM –1n
e

fig 14. Filter bank approach to TFR generation

jw0
XSTFT(e , n)

STFT

jw1
X (e , n)

jwM – 1
XSTFT(e , n)
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� The filter bank used in figure 14 can either be uniform or non-uniform. In a uniform  
filter bank, such as one used to implement the STFT, each filter has constant bandwidth:

fig 15. Constant bandwidth

� One choice of a non-uniform filter bank be one that has constant relative bandwidth,  
meaning that the bandwidth of the filter relative to its centre frequency is constant

f0

30

2f0 3f0 4f0 5f0
Frequency

Df
f-----= constant
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� This is also called a constant-Q analysis (Q being the quality factor). Such filters  
can be said to be uniform on a logarithmic frequency scale.

f0 2f0 4f0 8f0

fig 16. Constant relative (constant - Q) bandwidth

31

Frequency
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(21)

32

3. The Short-Time Fourier Transform(STFT)

Steps in finding STFT of a signal
1. Multiply the signal x(n) with a window w(n).
2. Compute the Fourier transform of the product x(n)w(n)
3. Shift the window w(n) in time
4. Go to step 1.

�This operation results in a separate Fourier transformation for each location m of the  

center of the window. In other words, we obtain a function X (ejw, m) of two
STFT

variables w and m . The frequency variable w is continuous, and takes the usual range.  
The shift variable m is typically an integer multiple of some fixed integer K. For any  
fixed m, the window captures the features of the signal x(n) in the local region around m.  
The window therefore helps to localize the time domain data, before obtaining the  
frequency domain information.

�The short-time Fourier transform can be written mathematically as

x(n)w(n – m)e–jwn

n  = –¥
for w(n) = 1, this reduces the the traditional Fourier transform for any choice of m.

å
jw

XSTFT(e , m) =
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e-jw0n  

modulator

33

–¥

ås(n)
y(n)x(n) s(n)

4. Interpretation using bandpass filters.

a) Traditional Fourier transform as a bank of filters

The evaluation of  X(ejw) at fixed frequency w can be represented as shown in figure17
0

LTI system H(ejw)

fig 17. Representation of Fourier transform in terms of linear systems

This can be considered as a cascade of two systems

1. The modulator e
–jw0n 

- It shifts the Fourier transform towards the left by an  

amount w , so that the zero frequency value of S(ejw) is equal to X(ejw) .
0

2. The LTI system H(ejw) - This has an impulse response h(n) = 1 for all n.  
Its frequency response is given as
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(22)

34

(23)

(24)

å aH(ejw) = h(n)e–jwn = 2pd (w)

n = –¥
where da ( ) is a Dirac delta function.

H(ejw) can be considered as an ideal lowpass filter which passes only the  
zero-frequency signal. Therefore the output is given as

–p £ w £ pY(ejw) = 2pX(e
jw0 )d (w)

a
jw0

i.e.  y(n) = X(e )

� Thus the process of evaluating X(ejw) can be looked upon as a linear system,  
which takes the input x(n) and produces a constant output y(n) whose value is

equal to X(ejw) for all time n. Thus any sample of y(n) can be taken to be the  

value of X(ejw)

� The Fourier transform operator which evaluates X(ejw) for all w is, therefore,  a 
bank of modulators followed by filters. This system has an infinite number of  
channels.
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b) STFT as a bank of filters

(5)

x(n)

ås(n)
y(n)s(n)

–¥
w(n-m)e-jw0n  
modulator

x(n)

35

LTI system with
impulse response  
w(-n)ejwon

t0(n) jwy0(n) = XSTFT(e 0,n)

mo 
e-jw0n

dulator

fig 18. a) The STFT represented in terms of linear system and b) a rearrangement of a

w and m are constants. So, y(n) is constant for all n. with  y(n) = X (e
jw0, m)

0 STFT

Equation (21) can be written as shown in equation (25)

x(n)w(n – m)ejw(m –n)

n = –¥
figure 18b. shows this interpretation

å
jw –jwm

XSTFT(e , m) = e
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�This is a linear system with two parts. The first is an LTI filter with impulse

36

jw0n –jw0n
response w(–n)e . This is  followed by the modulator e . The output
y0(n) of this system is now a function of n. For any specific value of n, say n = m,
this output represents the Fourier transform of x(n), in the neighbourhood of m,  
because m represents the location of the window w(k) in the time domain. For the  
special case where w(k) = 1 for all k, this output becomes a constant ( equal to the  
traditional Fourier transform) for all n.

� The window w(n) has a lowpass transform W(ejw) and so does w(-n).
–j(w – w0)

The modulated version represents a bandpass filter W(e )
The output sequence is therefore, the output of a bandpass filter, whose passband  
is centered around w0 .

–jw0n
�The modulator e re-centers the center frequency around zero frequency.

�For every frequency w0 the STFT performs the filtering operation to produce an  

output sequence X (e
jw0, m) . So, the STFT can be looked upon as filter

STFT
bank, with infinite number of filters (one per frequency). In practice, we are  
interested in computing the Fourier transform at a discrete set of frequencies
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0 £ w0 < w1 < … < wM – 1 < 2p . In this case the STFT reduces to a filter bank

with M bandpass filters H (z) with responses H (ejw) = W(e
–j(w – wk )) and followed

k k
by modulators as shown in the figure 19.

x(n)

37

t0(n)

t1(n)

tM-1(n)
HM-1(z)

H0(z) y0(n) =

H1(z) y1(n) =

yM-1(n) =

–jw0n
e

–jw1n
e

–jwM –1n
e

fig 19. The STFT operation viewed as a filter bank

jw0
XSTFT(e , n)

STFT

jw1
X (e , n)

jwM – 1
XSTFT(e , n)
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� If the frequencies wk are uniformly spaced, then the above system becomes the  
uniform DFT bank. For this case the M filters are related as

H ( k –j2p ⁄ M
k  z) = H0(zW ) 0 £ k £ M – 1 where W = e

This implies that the uniform DFT bank is a device to compute the short-time  
Fourier transform at uniformly spaced frequencies.

Choice of w(n), and Time-frequency tradeoff

� The STFT is not uniquely defined unless the window w(n) is specified. The choice  
of w(n) governs the tradeoff between time localization and frequency resolution. The  
signal y0(m) represents the evolution of the Fourier transform of x(n), evaluated
around frequency w0 . Thus y0(m) represents the local information, around time m

and around frequency w . As W(ejw) becomes narrower, the bandpass filters get
0

narrower, so the information in the frequency domain is more localized. However

as W(ejw) becomes narrower, the window w(n) gets wider (uncertainity principle) so  
that the localization of information in the time domain is compromised. Similarly by  
making the window w(n) narrower, the time domain information is more localized,  
while the frequency domain information is compromised.

38
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Time-frequency representation and decimation
Instead of moving the window one sample at a time, if we move it by M samples then  
it is equivalent to decimating the outputs y0(n) by M. Figure 20 shows the decimated
STFT system with the modulators moved past the decimators.

x(n)
H0(z)

H1(z)

HM-1(z) nM-1

n0 y0(n0n)

39

n1 y1(n1n)

yM-1(nM-1n)

–jw0n0n
e

–jwM – 1nM – 1n
e

fig 20. An analysis bank with decimators and modulators

Since the filters have equal bandwidth, the decimation ratios can be taken to be equal.  
With nk = M ( number of filters) we obtain a maximally decimated analysis bank.

–jw1n1n
e

x0(n)

x1(n)

xM-1(n)
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5. Inversion of the STFT.

(26)

(27)

(28)

(29)

� As X STFT

1
2p

jw jwn

(ejw, m) is the Fourier transform of x(n)w(n-m), we have
2p

x(n)w(n – m) = ------ ò XSTFT(e , m)e dw

1
2p

jw jwmdw
0

so that we can obtain x(n) for all m as long as w(0) is not equal to zero.

� A second inversion formula is given by

0
If we set n = m, then we obtain the STFT inversion formula as

2p

x(n)w(0) =  ------ ò XSTFT(e ,m)e

STFTå
ø

2p ç ÷

ö
X (ejw, m)w*(n – m)÷ejwndw

0 èm = –¥

2pæ ¥
1x(n) = ------ò ç

provided å w(m) 2 = 1
m

40
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6. Filter bank interpretation of the Inverse transform

fig 21. The synthesis bank used to reconstruct x(n) from its STFT coefficients.
Usually nk = M for all k

As long as the analysis filters Hk(z) are chosen properly, we can find stable synthesis  
filters Fk(z) to recover x(n) perfectly.

F0(z)

F1(z)

FM-1(z)

n0

n1

nM-1

jw0n0n
e

jw1n1n
e

yM-1(nM-1n)

jwM – 1nM – 1n
e

y1(n1n)

y0(n0n)

x0(n)

x1(n)

xM-1(n)

41
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7. Generalization of the STFT

� An arbitrary signal x(n) can be recovered from its decimated STFT coefficients,  
provided the analysis and the synthesis filter banks satisfy the perfect  
reconstruction(PR) property. However, the analysis filters are derived from a  
single prototype w(n) by modulation, the PR condition in turn will restrict the  
coefficients of w(n) severely. By relaxing this condition, we can obtain more  
flexibility. This generalized system is not derivable from a single sliding window  
system and is usually called “spectrum analyser”.

� The STFT pair can be written as

42

(30)x(m)hk(nkn – m)åxk(n) =

xk(m)fk(n – nkm) (31)
k = 0 m = –¥

k is the filter number and m is the time shift
� The analysis filters Hk(z) and synthesis fitlers Fk(z) satisfy the PR condition.

The decimators nk are inversly proportional to the passband widths fo the filters Hk(z).
� From an analogy of Fourier transform, we see that

fk(n-nkm) play the role of basis functions in equation (31)
For orthonormal basis, fk(n) = hk*(-n).

m = –¥
M – 1

å åand x(n) =
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8. Passing from STFT to Wavelets

step 1. Nonuniform filter banks

� The bandpass filters that we used for STFT have equal bandwidth as they are obtained  
by modulation of a single filter. As a first step, we give up this modulation scheme,  
and obtain filters hk(t) as

where a > 1, and k = integer (32)

(33)

-k/2� The scale factor a is meant to ensure that the energy  

This can be regarded as normalizing convention.

–k ⁄ 2 –k
hk(t) = a h(a t)

In the frequency domain this can be written as
k ⁄ 2 k

Hk(jW) = a H(ja W)

kh (t) 2dt is independent of k.–¥

� Thus all the responses are obtained by frequency-scaling (unlike frequency shift for STFT)  
of a prototype response H(jW)

¥ò

43
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where k, n are integers

44

(34)

By making the above changes, the wavelet transform can be obtained using a  
filter bank as shown in figure 22

Step 2. Nonuniform decimation

� Since the bandwidth of Hk(jW) is smaller for large k, we can sample its output at a
corresponding lower rate. In time domain this can be seen as a large step size for  
large widths of hk(t). The step size for window movement is akT and it increases
with k, that is, increases as the center frequency Wk ( hence bandwidth) of the filter  

decreases.

�Therefore, we can write the wavelet transform as
–k ⁄ 2 x(t)h(nT – a–kt)dt

–¥

¥

òXDWT(k, n) = a
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frequency
H0H1H2

12
2

H0

H1

H2

Sample at  
nT

Sample at  
2nT

Sample at  
4nT

XDWT(0,n)

XDWT(1,n)

XDWT(2,n)

Wavelet coefficients

x(t)

XDWT(0,n)

XDWT(1,n)

XDWT(2,n)

F0

F1

F2

b = 2aa

45

a
2---

a
4---

(a)

(b)

(c)

fig 22. (a) Frequency response obtained by the scaling process with a = 2. a and b are the cutoff  
frequencies of the bandpass filter (b) Analysis bank representation of DWT (c) Synthesis bank.


